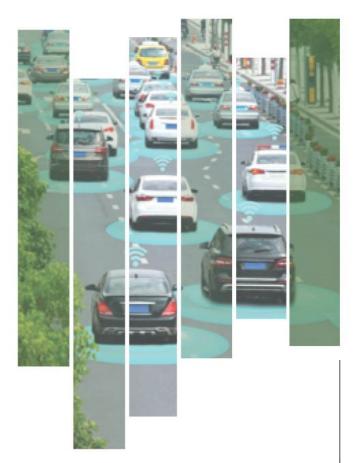



AV Considerations Under A Safe System Framework


AV Safety Context

AV Considerations Under Safe System Framework

Research Needs & Potential Next Steps

Agenda

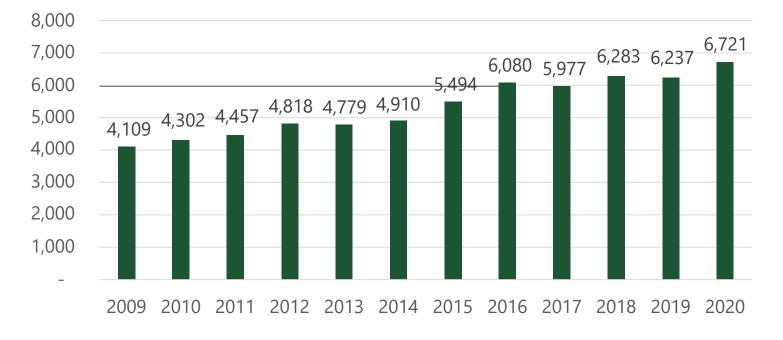
AV Safety Context

Adopting a Safe System Approach can improve safety outcomes both today and in an AV future

Accommodating human mistakes

Keeping impacts on the human body at tolerable levels

Acknowledges shared responsibility of roadway designers and users


Recognizes that redundancy is crucial

Source: FHWA

Pedestrian deaths are increasing

Fehr / Peers

Source: NHTSA

Automated vehicles are anticipated to fundamentally change how people travel

Potential BenefitsPotential RisksReduce congestionIncrease vehicle miles
traveled (VMT)Increase mobility for
people who can't driveIncrease exposure for
people walking/
bikingImprove traffic safety by
reducing "human error"Introduce new safety
risks

Study Shows Self-Driving Car Reduce Traffic Jams

Wed, 05/10/2017 - 10:29am 1 Comment by Kenny Walter - Digital Reporter - 🎔 @RandDMagazine

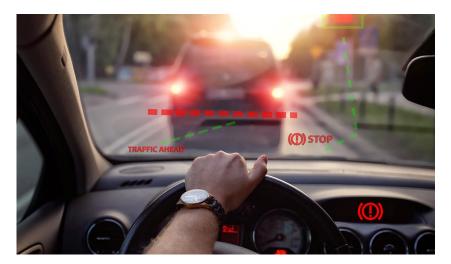
Self-driving Uber car involved in fatal accident in Arizona

It's believed to be the first pedestrian fatality attributed to a self-driving vehicle.

----- Investigators at the scene of a fatal accident involving a self-driving Uber car on the street in Tempe, Arizona. ABC-15.com / via AP

Key safety goals both today and in an AV future

- 1. Prevent crash from happening
- 2. Minimize kinetic energy transfer of a crash
- 3. Ensure excellent crash response & post crash care



AV Considerations under Safe System Framework

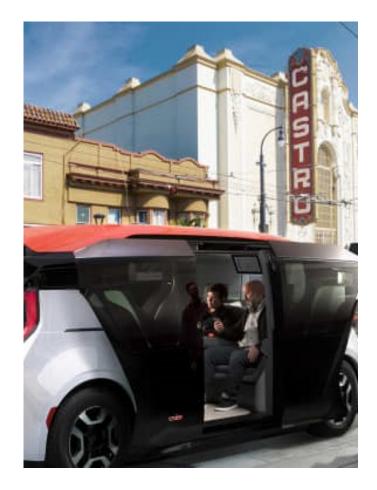
Safe Automated Vehicles

- Build on current technologies to reduce human error (e.g., lane departure warning, automatic braking)
- Consider effect of vehicle size/design on people walking/biking
- Protect passengers in different configurations (seatbelts, airbags)
- Standardize human-machine interface

Source: ambrozinio / Alamy Stock Photo


Safe Automated Vehicles

- Build on current technologies to reduce human error (e.g., lane departure warning, automatic braking)
- Consider effect of vehicle size/design on people walking/biking
- Protect passengers in different configurations (seatbelts, airbags)
- Standardize human-machine interface


Safe Automated Vehicles

- Build on current technologies to reduce human error (e.g., lane departure warning, automatic braking)
- Consider effect of vehicle size/design on people walking/biking
- Protect passengers in different configurations (seatbelts, airbags)
- Standardize human-machine interface

Safe Automated Vehicles

- Build on current technologies to reduce human error (e.g., lane departure warning, automatic braking)
- Consider effect of vehicle size/design on people walking/biking
- Protect passengers in different configurations (seatbelts, airbags)
- Standardize human-machine interface

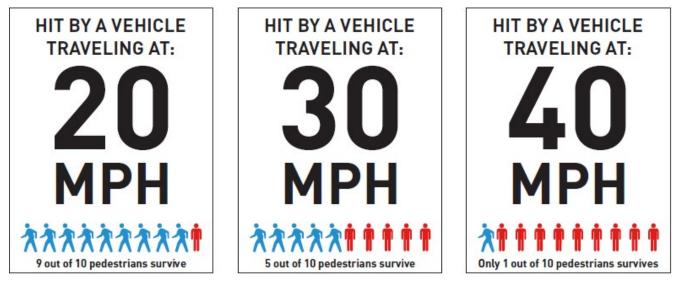
Source: Cruise

Safe Automated Vehicles

- Build on current technologies to reduce human error (e.g., lane departure warning, automatic braking)
- Consider effect of vehicle size/design on people walking/biking
- Protect passengers in different configurations (seatbelts, airbags)
- Standardize human-machine interface

Fehr / Peers

Source: Cruise


Safe Automated Vehicles

Source: Ford AV Safety Report

Safer Speeds through Automated Speed Regulation

- Regulate AVs to not exceed speed threshold
- Program AVs to travel below speed limit in adverse conditions or specific areas (e.g., with high walking/biking activity, senior populations)
- Test & regulate AV reaction time

Source: City of Seattle, Vision Zero Action Plan

AVs & Safe Road Users

- Reduce distracted & impairing driving
- Automate enforcement
- Consider AV sensor technology limitations & equity concerns
- Educate all road users

Fehr / Peers

125

Safe Roads with AVs

- Reinforce proven safety countermeasures & speed management strategies
- Improve pedestrian scale lighting
- Consider protected facilities vs. shared streets
- Enhance curb management strategies
- Promote consistency in roadway design & materials

Speed limits

Curb extensions

Median refuge islands

Narrower lanes

Safe Roads with AVs

- Reinforce proven safety countermeasures & speed management strategies
- Improve pedestrian scale lighting
- Consider protected facilities vs. shared streets
- Enhance curb management strategies
- Promote consistency in roadway design & materials

Shared streets

Separated bike lane

Safe Roads with AVs

- Reinforce proven safety countermeasures & speed management strategies
- Improve pedestrian scale lighting
- Consider protected facilities vs. shared streets
- Enhance curb management strategies
- Promote consistency in roadway design & materials

Safe Roads with AVs

- Reinforce proven safety countermeasures & speed management strategies
- Improve pedestrian scale lighting
- Consider protected facilities vs. shared streets
- Enhance curb management strategies
- Promote consistency in roadway design & materials

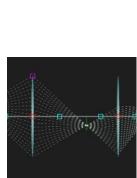
Navigating construction zones

Consistent striping & signage

Post-Crash Care

- Leverage connected vehicle technology to prioritize emergency vehicles
- Track AV information in traffic violation & crash reports
- Collect & analyze in-vehicle data (e.g., hard braking, near miss) to inform safety planning

Example Footage from "Near-Miss" Analysis (Bellevue, WA)


Research Needs & Potential Next Steps RESEARCH NEEDS & POTENTIAL NEXT STEPS

Research Needs & Potential Next Steps

- Analysis of current AV safety metrics (e.g., disengagements, collisions) & trends
- Advancement of federal/state AV regulations (e.g., safety metrics, speeds, reaction times)
- Data management (connected vehicle/smart city technology, in-vehicle data)
- Considerations for how AVs can help cities achieve their goals, in addition to how cities can prepare for AVs
- Considerations for potentially long AV transition period

syste. basic man planning. process formula

> AV Readiness Planning

Modeling & Simulation

Automated Goods Movement & Delivery

Conferences, Marketing & Promotion

What's Next?

Questions?